Model	Description						
LHI100	Power Inserter						
LHS102	2 Way Line Splitter						

LHC108	8dB Directional Coupler
LHC112	12dB Directional Coupler
LHC116	16dB Directional Coupler

LHI108	8dB Status Picker/Power Inserter
LHI112	12dB Status Picker/Power Inserter
LHI116	16dB Status Picker/Power Inserter

I HI100D Dual Power Inserter

LDC1085 LDC112

Port 4 RF Output

LHIIXX POWER INSERTER & COUPLER

Block Diagram

POWER INSERTER

Special Variation No AC

8dB Directional Couplers - 2 Way Splitter LDC108S LDC112S 12dB Directional Couplers - 2 Way Splitter

Special Variation No RF

LACS100 Central Node Power Inserter

LACS 100 Switched Port 1 - Port 2 Power Director & Socket - Common AC Point Port 4 - O Port 3

> LACS 100 Unswitched Port 1 Port 2 -Common AC Point Port 4 Port 3

Dimensions 6 3/8" X 5 3/4" X 2 15/16"

(16.2 X 14.6 X 7.5 CM)

Weight 1Kg (2.2 Lb.)

Mounting Arrangements

Aerial Mount

Hanger Bracket

Going the Last Mile

Tomorrow's architectures for sending or receiving information around the world or down the street will require a new era of communication equipment...now available from Lindsay Electronics.

Established in 1953, Lindsay is a leading manufacturer and global provider of RF distribution products for the CATV and wired communication industries. With our 150,000 square foot North American manufacturing facility, 300 dedicated employees, and a worldwide distribution network, we are committed to the growth and advancement of your business.

Focused on the last mile, our Hardline Passives, Subscriber Amplifiers, Apartment Amplifiers, Power Passing Multitaps, and Distribution Amplifiers all work from a 1 GHz platform. Our revolutionary new technology creates communications equipment to solve system problems before they become subscriber problems. This is achieved through applied ISO continuous improvement disciplines, innovation and strict attention to details.

A quarter century of proven reliability and superior performance under the most severe climatic conditions result in fewer service interruptions, less maintenance and thus better service at lower operating cost.

Going the extra mile ... for the last mile Since 1953

50 Mary Street West, Lindsay, Ontario, Canada K9V 4S7 E-mail: techinfo@hq.lindsayelec.com Tel: (705) 324 2196 Tel: (800) 465 7046 Fax: (705) 324 5474

LINDSAY ELECTRONICS

High Power 1 GHz Communication Passives

Revolutionary Technologies from Lindsay Electronics Create the New Standard for System Symmetry

Going the extra mile ... for the last mile

COMPARE BANDWIDTH POWER HANDLING CAPABILITY AND NON-DISRUPTION OF SERVICE ALL THIS AND MORE FROM THE PEOPLE WHO CREATED THE STANDARD

THE STANDARDS WE MEET:

ELECTROMAGNETICS AND SAFETY Electromagnetic Compatibility and Electrical Safety-Generic Criteria Bellcore-GR-1089-CORE Type 1

EMI Isolation better than 100 dB

RELIABILITY

Reliability Prediction Procedure for Electronic Equipment Bellcore-TRNWT 000332 Black Box Method 1 Case1 (Results on file)

SURVIVABILITY

I.E.E.E. Guide for Surge Voltages in Low Voltage AC Power Circuits ANSI/IEE-C62.41.1991 Category B3 (Combination Wave)

WEATHERING

A.S.T.M. Standard Test Method of Salt Spray (Fog) Testing ASTM-B117-90 (Results on File)

HIGH CURRENT SURVIVABILITY 25 Amperes for 2 hours

Perfor	mance Sp	pecific	ations			5 to 1000 MHz				15 Ampere Rating				
Model	-		10	30	- 60	50	300	450	550	759	892	1990		
EHit00	No.2	0.45	0.30	0.25	0.25	8.25	0.30	0.75	0.30	0.38	0.60	8.70	- 73	
		0.55	0.45	0.35	0.55	0.35	0.35	D.4D	0.40	0.55	0.70	0.90	M	
	ISO AC	88	84	87	15	- 64	40	- 48	-40	-40	47.	-48	V	
UHR102	No. 283	3.65	3.65	3.90	3.50	1.50	2.00	3.60	3.00	4.00	A 25	4.45	17	
	iso	3.75	3 80	3.60	3.60	3 60	3.60 23	3.95	4.05	4 25	4 50 25	4.75	- W	
								1000						
UH6103	No. 4	3.65	3.65	3.50	3.50	3.50	3.70	3.85	4.00	4.20	4.33	4.05		
	No 283	6.80	7.06	3.60	3.60	3.60	3.00	4.05	4 15	4.40	4 00	4.90	-M	
		7.10	7.20	7.00	6.16	0.95	7.15	7.35	1.45	7.7%	8.20	# 70	M	
	180	20	10	17	36	38	35	31	29	21	23	29	M	
1)-851038	hin 4	5.50	5.55	5.40	5.35	5.35	0.75	5.85	0,15	0.25	6.43	4.80	10	
	No 243	5.65	5.70	5.55	5.50	5.50	5.85	6.20	8.35 5.65	0.50	e 70 40.50	7.20	N.	
		5.25	5.95	. 5.70	5.65	5.60	5.80	6.00	6.10	6.35	6.75	7.20		
	190	29	27	30	31	31	22	28	24	22	20	20	M	
LHC108	50.2	2.00	2.16	1.90	1.85	1.80	1.90	2.10	2.15	2.20	7.45	3.05	T	
1.0		2.10	2.30	2.10	2.00	2 00	2.10	2.30	2.40	2.50	2.75	3.20	- M	
	No 3	9.2 9.4	92	92	10.1 10.3	91	9.0	9.0	9.0	23	9.2	8.0	M	
	180	21	26	29	29	29	28.5	28	27	24.5	32.5	19	Ň	
Lange and	And the	1.00										-		
LHC112	No.2	1.05	1.20	1.00	1.00	1.10	1.05	1.00	1,60	1.65	1.95	2.35	T	
	NL 2	12.0	12.2	12.2	12.1	12.1	12.1	12.0	12.1	12.2	12.3	12.3	OT	
	180	12.2	12.3	12.3	12.3	12.3	12.3	12.3	12.4	12.6	12.7	17.8	M	
LHC118	No.2	0.95	1.15	0.00	0.00	0.90	0.85	1.05	1.10	1.10	1.20	1.50	T	
	No. 3	1.10	1.30	1.10	1.05	1.05	1.10	1.20	1.30	1.30	1.35	1.70	T	
		15.8	18.1	16.2	18.2	16.7	10.3	16.3	16.5	17,0	17.2	16.0	- 84	
	80	33	45	भा	39	38	29	29	21	31	26	21	M	
LHHOR.	Pi0:2	2.00	2.15	1.00	1.85	1.80	1.90	2,10	2.15	2.35	7.45	3.05	T	
	-	2.10	2.90	2.10	2.00	2.00	2.10	2.30	2.40	0.50	275	3.70	14	
	No. 3	9.4	0.4	8.2 8.3	81	21 23	8.0 9.2	8.0 8.2	0.0 9.3	81	02 05	9.0 9.0	The second	
	IBO RF	21	28	29	-29	29	26.5	28	27	245	22.5	10	14	
	DA OBI	68	64	67	10	64	40	-46	-41	48	.47	40	м	
LHI12	No.2	1.05	1.20	1.00	1.00	11.95	1.05	1.30	1.47	1.80	1.95	2.15	1.00	
	No.2	1.25	1.35	1.10	1.10	1.10	1.20	1.45	12.1	1.05	2 20 12.8	2 60	E D	
	140.0	12.2	12.3	12.3	12.3	12.3	12.3	12.3	12.4	12.6	12.7	12.0	M	
	IBD RF ISO AC	29	41 84	32 67	26	28 64	25	28	27	25	22	19	M	
	100 44	.00	04	a.	65	04	-49	46	46	45	47	40	M	
UHITE	No 2	11.95	1.15.	0.95	0.90	0.90	10.85	1.05	1.10	1.10	1.20	1.50	T	
	No.2	1.10	1.30	1.10	1.05	1.05	110	1.20	1.30	1.30	1.35	170	D	
		15.8	16.1	16.2	16.2	16.2	16.3	16.3	16.5	17.0	17.2	16.6	. 14	
	ISC RF ISC AC	30	-42	41	38 65	30	29	25 45	31	34	26	21	M	
										-46	AT	48	W	
LHI1080	No. 2	0.45	0.35	0.29	0.25	0.25	0.20	0.25	0.30	0.26	0.50	0.70	. 17	
	ISO AC	0.55	0.45	0.35	0.35	0.35	11.35	0.40	0.45	0.55	0.70 47	0.90	M	
			1.57											
RETURNILO	es r	18	18	18	18	20	20	20	20	20	20.	20]	M	
	1.	-		1000								-	1	
HUM MODUL			verage of 5	10 and 50	D MPHE		Average of 300, 450, 550, 752 and 1000 MHz							
© 10 Ampères © 12 Ampères © 15 Ampères		11- 11-							-80			-	MP MP	
				-05					-70				M	
						-43	to +60 %C							
Special	Variations	1	Return L	oss of 1	l dil for	LDC108	5 and LD	C1125)		2=1				
lledel	-	- 1	10	30	40	50	300	450	860	768	140	1000		
DC1088	THE 263	6.20	5.10	5.00	4.10	4.90	0.15	5.45	5.55	5.90	6.30	1.65	(T)	
	Als: 4	5.50	6.40	5.20	5.10	5.10	5.35	5.65	5.60	6.25	6.70	7.40	M.	
	No. 4	9.15	9.00	8.90	8.90 9.20	8.90	±.75 8.95	8.45	8.05	7.55	7,45	7.25	TY N	
	190	20	-29	31.5	82	32	27	38	25	24	19.5	19	M	
DC1126	No. 263	430	4.15	4.00	4.00	4.00	4.30	4.50	470	5.15	1.60	1.40	D	
100	- FW ARA	4.70	4.50	4.30	4:30	4.30	4.55	4.75	4.95	5.40	5.95	7.00	M	
	No.4	12.20	12:10	12.00	12.00	12:00	11.70	11.40	11.20	10.65	10.75	10.45	T	
					10.00	12.30	11.90	11.70	11.60	11.25	11.28	11,15	- MA	
	150	21	26	12.30	36	35	28		27					
ACS100	150 AC Ourent Ra	21		35				28		23	21.6	20	M	

All Specifications subject to change without notice

As an inrush current protection devise, the Lindsay LPD100-2 Power Delay circuit is used to delay the supply of power to one portion of the system. It's use is recommended where the required start-up surge is greater than the maximum current rating of the AC power supply. By inserting the LPD module in the AC path, the load is partitioned into segments, each with lower start-up current. When AC power is applied to the system the LPD circuit is activated and completes the AC path only after an approximate delay of 4 seconds.

SPECIFICATIONS				
Voltage	40 - 110 VAC sine wave, 50-60 Hz			
Line Current	10 Amps, max. continuous, 250 Amps peak			
Line Voltage Drop1 voltCurrent Consumption0.3 A RMS				
Delay (approx.) 4 seconds				
Detection Time 1 Cycle (50-60 Hz)				

APPLICATION

6-444 LINDSAY SURGE CLAMP

Constant - Repetitive AC RMS S4070 device......70 A Max. Voltage (Forward & Reverse) AC RMS. .400 V Max. Rate of "turn off" voltage ..1500 V/uSec. Rate of "commutation" voltage (dv/dt)... ..40 V/uSec. Voltage Triggering range (before activated)....140-170 V AC. Current (1 cycle) Non-Repetitive (60 Hz)..........950 A Max. Current (1 cycle) Non-Repetitive (50 Hz)...........800 A Max.

Engineered Solutions LPD100-2 POWER DELAY MODULE

LHI-1XX APPLICATION

Standard

Mounting Hardware

Corrosion Resistant Zamak 3 housing ASTM - 117 - 90 SALT/FOG Tested

Stripline Technology

Large heat shrink areas on all ports

Duratron Power Coil System 20 Amps Continuous

OPEN OPEN 145 0mm Contractor Pi L CLOSED 250 FC Roand

Lindsay's patented centre conductor seizure mechanism minimizes common path distortion and microreflections. Large contact area with high clamping pressure and direct motherboard transfer increases current handling while eliminating centre conductor distortion and plating fractures. This proven new technology results in increased reliability and signal integrity over time and temperature.

Captive stainless steel

